Электротехнический-портал.рф

...для студентов ВУЗов электротехнических специальностей и инженеров

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Основные виды поляризации

E-mail Печать PDF
(1 голос, среднее 5.00 из 5)

Существо поляризации большинства диэлектриков состоит в воз­никновении электрического (дипольного) момента в объёме диэлек­трика вследствие перемещения связанных электрических зарядов (за­рядов, связанных в атомах, молекулах, кристаллической решетке) под действием внешнего электрического поля.

Объясним этот механизм поляризации на примере поляризации атома. Перед приложением внешнего электрического поля положитель­ные и отрицательные заряды в атоме распределены так, что внешне атом проявляет себя как электрически нейтральный. Центры тяжести положительных и отрицательных зарядов при этом совпадают.

При воздействии внешнего электрического поля симметрия в распределении зарядов нарушается, возникает индуцированный элек­трический момент. Центр тяжести положительных зарядов при этом смещается в направлении напряженности внешнего поля, а центр тяжести отрицательных зарядов – в противоположном направлении. Такой механизм поляризации называется электронной поляризацией. Смещение центра тяжести отрицательных зарядов пропорционально напряженности внешнего поля.

Проследим, как этот механизм проявляется на временной зави­симости электрического тока поляризации в течение одного периода (рисунок 7.1).

Изменение во времени электрического тока поляризации диэлектрика с электронной поляризацией

Рисунок 7.1 – Изменение во времени электрического тока поляризации диэлектрика с электронной поляризацией

В первой четверти периода напряженность внешнего поля непре­рывно возрастает и в момент t = T/4 достигает максимума. Тотчас после приложения поля центр тяжести отрицательных зарядов откло­нится и через диэлектрик потечет относительно большой ток. При дальнейшем возрастании напряженности поля смещение центра тяжести хотя и увеличивается, но все медленнее, так как поле должно преодолевать все большие упругие силы. Поэтому ток постепенно уменьшается. При t = T/4 ток становится равным нулю и смещение электронов против направления напряженности внешнего поля заканчивается. С этого момента направление движения электронов изменится, так как упругие силы связи стремятся возвратить их в исход­ное положение. Поэтому при уменьшении напряженности внешнего поля ток течет в обратном направлении и постепенно уве­личивается. При t = T/2 центры тяжести зарядов находятся в исходном положении. Во втором полупериоде процесс повторяется с той разницей, что заряды смещаются в направлении, обратном направлению их смещения в первом полупериоде. Этот про­цесс периодически повторяется.

Время, в течение которого заряды в атомах способны реагировать на внеш­нее поле, очень мало и имеет порядок 10-15 с, то есть реакция почти мгновенна, поэтому вектор тока опережает вектор на­пряжения на 90°.

При других типах поляризации это время больше, так как меха­низм поляризации является иным. Часто речь идет о смещении более тяжелых частиц, встречающих сопротивление среды. В таких случаях опережение вектора тока по отношению к вектору напряжения мень­ше 90°.

Каким бы ни был физический механизм при различных типах поляризации, внешне поляризация проявляется всегда одинаково, т.е. как нарушение симметрии распределения электрических зарядов в ди­электрике. Заряды противоположных знаков, смещенные внешним по­лем со своих равновесных положений, образуют электрические диполи, поле которых действует навстречу причине их возникновения и спо­собно скомпенсировать часть внешнего электрического поля. Поле диполей связывает часть зарядов на электродах.

В общем случае электрическая поляризация представляет собой комплекс явлений, связанных с различными механизмами поляриза­ции и происходящих на микроскопическом уровне.

Основным механизмом поляризации можно считать упругое сме­щение частиц в диэлектрике. Поляризация такого типа называется упругой. При упругом смещении электронов в атомах говорят об упругой электронной поляризации. При взаимно упругом смещении противоположно заря­женных ионов в кристаллической решетке ионных кристаллов говорят об упругой ионной поляризации. В случае упругого смещения про­тивоположно заряженных частиц в молекуле с постоянным дипольным моментом говорят об упругой дипольной поляризации. Общим признаком таких механизмов поляризации является то, что поляризация происходит очень быстро и без потерь.

Может случиться, что индуцированный электрический момент воз­никает в результате смещения слабосвязанных частиц (электронов или ионов), которые не связаны упругими силами, или в результате ори­ентации постоянных диполей в направлении внешнего поля. Реакция этих частиц на изменения внешнего поля уже не такая быстрая, как в случае поляризации упругого типа. После исчезновения внешне­го поля частицы возвращаются в исходное положение не мгновенно, а через определенное время, и не под действием упругих сил связи, а в результате хаотического теплового движения. Такие механизмы поляризации называются релаксационными и характерны тем, что сопровождаются потерями электрической энергии и сильно зависят от интенсивности теплового движения, т. е. от температуры.

К этим основным механизмам поляризации в некоторых специаль­ных случаях добавляются особые типы поляризации – миграционная и спонтанная.

Миграционная поляризация заключается в возникновении индуци­рованного дипольного момента вследствие смещения свободных заря­дов, которые не имеют возможности нейтрализации на электродах.

Такие заряды концентрируются под действием внешнего поля на бло­кирующих барьерах различного характера и образуют пространствен­ные заряды, поле которых внешне проявляет себя как поляризация особого вида. Это типично для неоднородных диэлектриков.

Спонтанная поляризация заключается в ориентации спонтанно (самопроизвольно) образовавшихся электрических моментов в направ­лении внешнего электрического поля. Это типично для сегнетоэлектриков.

Оба особых типа поляризации имеют нелинейный характер.

О релаксационном характере поляризации можно говорить в узком и широком смысле.

В узком смысле релаксационной поляризацией считается такая поляризация, при которой зависимость поляризованности от времени после приложения или снятия внешнего постоянного поля имеет экспоненциальный характер и описывается выражениями (7.1) или (7.2).

После приложения поля поляризованность растет во времени

(7.1)

где Pr(t) – релаксационная поляризованность в момент t; Pr∞(t) – релаксационная поляризованность в установившемся состоянии; Т – постоянная времени; e – основание натуральных логарифмов (e =2,718).

После снятия внешнего поля релаксационная поляризованность уменьшается согласно формуле

(7.2)

Кривые изменения релаксационной поляризованности во времени при приложении и снятии внешнего поля показаны на рисунке 7.2.

Изменение во времени поляризованности при релаксационном характере поляризации

Рисунок 7.2 – Изменение во времени поляризованности при релаксационном характере поляризации:

a – при возникновении; б – при исчезновении

Важным параметром процесса релаксационной поляризации явля­ется постоянная времени Т. Она равна времени, за которое релакса­ционная поляризованность после снятия электрического поля уменьшается до 1/е, то есть приблизительно до 37% первоначального уровня. Неполярными считаются такие диэлектрики, частицы которых не имеют постоянного дипольного момента и у которых могут возникать только индуцированные дипольные моменты под действием внешнего электрического поля. Основной вопрос в том, является ли молекула материала полярной или неполярной, принадлежит характеру хими­ческих связей и ориентации диполей. Если эти связи без дипольного момента, то есть чисто ковалентные, или если эти связи – переходного типа с дипольными моментами, которые ориентированы так, что взаимно компенсируются; центры тяжести положительных и отрицатель­ных зарядов в молекулах материала совпадают и материал является неполярным. На практике к неполярным материалам относят и такие полярные материалы, у которых полярность очень слабо выражена, то есть молекулы имеют лишь малый постоянный дипольный момент.

К неполярным электроизоляционным материалам относятся поли­этилен, политетрафторэтилен, полистирол, парафин и др. Слабополяр­ным является нефтяное (минеральное) масло.

Полярными считаются такие материалы, молекулы которых и без воздействия внешнего электрического поля имеют электрический момент (собственный, или постоянный, дипольный момент). Это моле­кулы, в которых отдельные атомы связаны полярными связями со взаимно нескомпенсированными  дипольными моментами связей.

К полярным материалам относятся целлюлоза, поливинилхлорид, хлорированные дифенилы и др.

Поляризованность диэлектрика равна индуцированному диполь-моменту единицы объема диэлектрика, т. е является суммой элементарных дипольных моментов в единице объёма Способность диэлектрика к поляризации можно охарактеризовать тремя величинами – поляризуемостью, диэлектрической восприимчивостью и относительной диэлектрической проницаемостью. В технике чаще всего используется относительная диэлектрическая проницаемость.

Поляризуемость связана с поляризованностью диэлектрика

P=NαE, (7.3)

где Р – поляризованность; N – концентрация индуцированных диполей; α – поляризуемость; Е – напряженность постоянного электриче ского поля.

Относительная диэлектрическая проницаемость и диэлектрическая восприимчивость диэлектрика связаны с поляризованностью

(7.4)

где ε0 – диэлектрическая постоянная (ε0=8,854·10-12 Ф/м);  – относи­тельная диэлектрическая проницаемость;  - диэлектрическая восприимчивость.

Из сравнения выражений (7.3) и (7.4) следует соотношение между относительной диэлектрической проницаемостью, относительной диэлек­трической восприимчивостью и поляризуемостью диэлектрика

(7.5)


Обновлено 17.12.2014 12:17  
Интересная статья? Поделись ей с другими:

Основное меню

Авторизация


© 2016 Электротехнический портал. Все права защищены.

Яндекс.Метрика