Электротехнический-портал.рф

...для студентов ВУЗов электротехнических специальностей и инженеров

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта
Главная Ветроэнергетика

Ветроэнергетика

E-mail Печать PDF
(7 голоса, среднее 4.71 из 5)

Ветроэнергетика

Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2009 года общая установленная мощность всех ветрогенераторов составила 159,2 гигаватт[1]. В том же году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 340 тераватт-часов (около 2 % всей произведённой человечеством электрической энергии). Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2009 год в Дании с помощью ветрогенераторов производится 20 % всего электричества, в Ирландии — 14 %, в Португалии — 14 %, в Испании — 13 % и в Германии — 8 %. В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Интеллектуальное управление распределением электроэнергии может помочь в решении подобных проблем.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности Земли/моря являются ламинарными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров. Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире. Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность не прямопропорциональна скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в десять раз. Мощности ветрогенераторов и их размеры

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, вес гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. Компания Clipper Windpower разрабатывает ветрогенератор мощностью 10,0 МВт для офшорного применения[13]. В 2009 году турбины класса 1,5 — 2,5 МВт занимали 82 % в мировой ветроэнегетике.

Континентальное распределение установленных ветроэнергетических установок

 

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, то есть с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора. Главная проблема таких генераторов — механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Ветроэнергетические установки

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Из всевозможных устройств, преобразующих энергию ветра в механическую работу, в подавляющем большинстве случаев используются лопастные машины с горизонтальным валом, усанавлива-емым по направлению ветра. Намного реже применяются устройства с вертикальным валом.Установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра дост точно велики.

КПД достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт.

Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 долл/кВт и имеет тенденцию к снижению.

Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность. Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы.

Автономные установки киловаттного класса, предназначенные для энергоснабжения сравнительно мелких потребителей, могут применяться и в районах с меньшими среднегодовыми скоростями ветра.

Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн. кВт ВЭУ, в Дании ВЭУ производят около 3 % потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии.

По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит и стоимость производимой ими энергии снижаются. Если в 1981 г. стоимость электроэнергии производимой ВЭУ, составляла примерно 30 американских центов за кВт.ч, то сегодня она составляет 6-8 центов.

В развивающихся странах интерес к ВЭУ связан в основном с автономными установками малой мощности, которые могут использоваться в деревнях, удаленных от систем централизованного электроснабжения. Такие установки уже сегодня конкурентоспособны с дизелями, работающими на привозимом топливе. Однако в некоторых случаях непостоянство скорости ветра заставляет либо устанавливать параллельно с ВЭУ аккумуляторную батарею, либо резервировать ее установкой на органическом топливе. Естественно, это повышает стоимость установки и ее эксплуатации, поэтому распространение таких установок пока невелико.

Новая концепция ветряной электростанции - без турбин

Нью-йоркская дизайн-студия Atelier DNA разработала новую, довольно интересную концепцию устройства, которая собирает энергию ветра… без традиционных ветряных турбин. Эта концепция под названием Windstalk разрабатывалась специально для проекта экологически чистого города Масдар Сити, что в Абу-Даби, как в качестве местной достопримечательности, так и для производства электроэнергии для нужд города.

Природно-техническая система ветроэнергетических установок

Концепция Windstalk представляет собой 1203 довольно гибких столба высотой 55 метров, сделанных из углеродного волокна и армированных полимером, каждый из которых закреплен в земле в бетонном основании 10 – 20 метров в диаметре. Сами столбы у основания имеют 30 см в диаметре и постепенно сужаются, достигая 5 см в диаметре в верхней части. В качестве наполнителя столба служат стеки пьезоэлектрических керамических дисков. Между дисками расположены электроды, которые подключены к кабелям, проложенным по всей длине внутри столба – один кабель соединяет четные электроды, а другой соединяет нечетные.

Таким образом, когда столб качается на ветру, стеки пьезоэлектрических дисков сжимаются, создавая ток через электроды. Для того, чтобы визуально увидеть мощность генерации энергии, каждый столб в верхней части (50 см) оснащен светодиодной лампой, которая светится или тускнеет в зависимости от вырабатываемого количества энергии.

Для того, чтобы максимизировать количество электроэнергии, производящее ветряной «фермой» Windstalk, разработчики разместили в бетонном основании каждого столба генератор крутящего момента, которые преобразуют кинетическую энергию покачивания столбов в электричество.

Поскольку производство электроэнергии в концепции Windstalk будет зависеть от силы и скорости ветра, дизайнеры разработали способ хранения энергии. Под столбом будут установлены две большие камеры с водой, расположенных друг над другом. Когда дует ветер, часть электроэнергии используется для питания множество насосов, которые поднимают воду из нижней камеры в верхнюю. Потом, когда ветер стихает, вода спускается из верхней камеры в нижнюю, превращая насосы в генераторы.

Проектная группа предполагает, что общий объем производства электроэнергии концепцией будет сопоставим с количеством электричества, которое вырабатывает обычный массив ветряных турбин за счет большей плотности размещения столбов.


Обновлено 01.10.2013 10:11  
Интересная статья? Поделись ей с другими:
Читайте также :

» Роль электроэнергетики в современном мире

История цивилизации — история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном...

» Электроэнергетическое хозяйство России

Электроэнергетика занимается производством электрической энер­гии, ее транспортировкой и распределением с помощью линий...

» Принципы и факторы размещения электроэнергетики

Функционирование топливно-энергетического комплекса России базируется на развитии электроэнергетики, угольной и нефтегазовой...

» Северо-Западный федеральный округ

Основная часть добычи нефти, газа и угля сконцентрирована на востоке округа, а потребление — в западной части, что обусловливает...

» Приволжский федеральный округ

Поволжский экономический район специализируется на нефтяной и нефтеперерабатывающей, химической, газовой, обрабатывающей...

Основное меню

Авторизация


© 2016 Электротехнический портал. Все права защищены.

Яндекс.Метрика